Portable Implementation of a Quantum Thermal Bath for Molecular Dynamics Simulations
نویسندگان
چکیده
Recently, Dammak and coworkers (Phys. Rev. Lett. 103:190601, 2009) proposed that the quantum statistics of vibrations in condensed systems at low temperature could be simulated by running molecular dynamics simulations in the presence of a colored noise with an appropriate power spectral density. In the present contribution, we show how this method can be implemented in a flexible manner and at a low computational cost by synthesizing the corresponding noise ‘on the fly’. The proposed algorithm is tested for a simple harmonic chain as well as for a more realistic model of aluminium crystal. The energy and Debye-Waller factor are shown to be in good agreement with those obtained from harmonic approximations based on the phonon spectrum of the systems. The limitations of the method associated with anharmonic effects are also briefly discussed. Some perspectives for disordered materials and heat transfer are considered.
منابع مشابه
Super operator Technique in Investigation of the Dynamics of a Two Non-Interacting Qubit System Coupled to a Thermal Reservoir
In this paper, we clarify the applicability of the super operator technique for describing the dissipative quantum dynamics of a system consists of two qubits coupled with a thermal bath at finite temperature. By using super operator technique, we solve the master equation and find the matrix elements of the density operator. Considering the qubits to be initially prepared in a general mixed st...
متن کاملThermal conductivity calculation of magnetite using molecular dynamics simulation
In the current research, thermal conductivity of magnetite (Fe3O4) has been calculated using molecular dynamic simulation. The rNEMD Molecular Dynamics Method provided in the LMMPS package is used for the simulation of the thermal conductivity. The effects of magnetite layer size and temperature on the thermal conductivity have been investigated. The numerical results have...
متن کاملNosé - Hoover dynamics for coherent states
The popular method of Nosé and Hoover to create canonically distributed positions and momenta in classical molecular dynamics simulations is generalized to a genuine quantum system of infinite dimensionality. We show that for the quantum harmonic oscillator, the equations of motion in terms of coherent states can easily be modified in an analogous manner to mimic the coupling of the system to a...
متن کاملSemiclassical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems
Two different semiclassical approaches are presented for extending flux correlation function methodology for computing thermal reaction rate constants, which has been extremely successful for the ‘‘direct’’ calculation of rate constants in small molecule (;3 – 4 atoms) reactions, to complex molecular systems, i.e., those with many degrees of freedom. First is the popular mixed quantum-classical...
متن کاملAccelerating the computation of bath spectral densities with super-resolution
Irreversible processes such as solvation, energy transfer, and chemical binding have received renewed interest in recent years. Because these processes involve large systems with many degrees of freedom, the typical approach to studying these processes is the open quantum systems formalism, in which the degrees of freedom are partitioned into a system of interest and a bath held at thermal equi...
متن کامل